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Abstract In this paper, elements of differential game theory are used to analyze a
spatially explicit home range model for interacting wolf packs when movement behav-
ior is uncertain. The model consists of a system of partial differential equations whose
parameters reflect the movement behavior of individuals within each pack and whose
steady-state solutions describe the patterns of space-use associated to each pack. By
controlling the behavioral parameters in a spatially-dynamic fashion, packs adjust their
patterns of movement so as to find a Nash-optimal balance between spreading their
territory and avoiding conflict with hostile neighbors. On the mathematical side, we
show that solving a nonzero-sum differential game corresponds to finding a non-inva-
sible function-valued trait. From the ecological standpoint, when movement behavior
is uncertain, the resulting evolutionarily stable equilibrium gives rise to a buffer-zone,
or a no-wolf’s land where deer are known to find refuge.
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1 Introduction

Territories take the form of distinct space-use patterns, many of which persist over
long periods of time (Moorcroft and Lewis 2006). For example, some wolf territories
are separated by long-lasting buffer-zones, areas between territories that each pack
avoids, which constitute a deer sanctuary (Mech 1977). There is also evidence that, in
these buffer zone regions, the deer density is higher than in surrounding wolf territo-
ries (Hoskinson and Mech 1976). It is intriguing to ask how such buffer zones can arise
and be maintained as stable entities, when wolf packs could gain much-needed addi-
tional prey by trespassing into the buffer zones and depleting them of prey. An early
theoretical investigation assumed hexagonal territories with intervening buffer zones
and Lotka-Volterra predator prey dynamics, concluding that such buffer zones should
be susceptible to invasion by adjacent packs, thus having limited stability (Taylor and
Peters 1991). However, a partial answer to the issue of buffer zone persistence stems
from the observation that wolf scent-mark densities can be high at territorial boundaries
where interpack aggression is also high (Peters and Mech 1975). When these ideas are
included in a mechanistic territorial model with fixed behavioral rules for movement
and scent-marking, buffer zones and bowl-shaped scent mark densities (with the edges
of the bowl corresponding to territorial boundaries) can arise spontaneously under the
joint assumptions of (i) positive feedback with regard to overmarking foreign scent
marks and (ii) spatial avoidance of foreign scent marks (Lewis and Murray 1993)
(Fig. 1).

Mechanistic models for territorial movement of the form analysed in Lewis and
Murray (1993) provide a framework, based on mathematical modelling and real data
analysis, for determining how animal space-use behaviors shape observed territorial

Fig. 1 Sharp territorial boundaries arise from mechanistic models with scent marking rules. The mathe-
matical model describes 5 interacting packs. The height of the surface indicates total space-use density and
the gradation indicates scent-mark density. Note the existence of buffer zones and heightened scent mark
density. For details of the underlying mathematical model see Moorcroft and Lewis (2006). This figure is
based on color plate six of Moorcroft and Lewis (2006)
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patterns (Moorcroft and Lewis 2006). The mechanistic models start from a biased
random walk, with behavioral rules formulated to describe how individuals respond
locally to environmental conditions. The long-term space use of the territorial individ-
uals can, in turn, be approximated by steady states of Fokker-Planck equations that are
derived from the random walk model. The Fokker-Planck equations have coefficients
that vary spatially, depending on locally varying conditions such as scent mark density,
terrain slope, or prey density. Predictions from the Fokker-Planck approximations for
space use have been rigorously tested against radio-tracking data, and have shown to be
more powerful than typical statistical models (Moorcroft et al. 1999). The reasons for
this are two-fold. First they can replicate the complex patterns of space use observed in
radio-tracking data using very few model parameters, and second they can accurately
predict territorial shifts under changing conditions (such as removal of a competing
pack). For example, the mechanistic modelling Fokker-Planck approach can determine
how interpack scent marking and prey resource availability govern territorial patterns
of animals in heterogeneous environments, such as coyotes in Yellowstone (Moorcroft
et al. 2006). [For a test of a model predictions for territorial shifts under changing con-
ditions, see, for example, color plate 15 of Moorcroft and Lewis (2006)].

One limitation of the mechanistic models, as originally formulated, lies in the
assumption of fixed behavioral rules, that do not respond to the behaviors of individ-
uals from adjacent packs. Space-use behavior is expected to result from a tradeoff
between expanding a territory (so as to maximize prey intake, prevent intra-pack com-
petition, provide mating opportunities, etc.) and avoiding conflict with hostile neigh-
bors (Adams 2001). Thus, although the ecological determinants of home-range pattern
formation are, in the light of such models, much better understood, a new question
arises: that of the evolutionary relevance of the underlying space-use behavioral rules.

The simplest approach to evolutionary significance of space-use does not use mech-
anistic models at all. It simply asks how adjacent packs can occupy space so as to
individually maximize space occupancy while avoiding neighbors (Adler and Gordon
2003). When two adjacent packs attempt to do this simultaneously, it can be formu-
lated as a game. We refer to this as a u-game because this game is with respect to the
expected density of packs u. As we will show, a simple analysis of the u-game gives
rise to a distinct partitioning of space with no territorial overlap. Indeed this pattern is
sometimes seen in some territorial mammals, such as badgers (Kruuk 1989; Moorcroft
and Lewis 2006).

How, then, do buffer zones arise as evolutionarily stable strategies? Assuming each
location in space a priori has the same value (as opposed to a resource-continuum
version of the ideal-free-distribution, see Rowell (2009) and references therein), one
possibility is that buffer zones are a response to wolf movement patterns that are
unknown or uncertain. Such uncertainty will arise from behaviors that are unpredict-
able a priori, being dependent upon stochastic individual components (such as gut
fullness) or variable environmental cues (such as deer scent patterns). In this case, if
interactions are aggressive then it may be advantageous to avoid regions that are close
to another pack.

It is this possibility of uncertainty in behavior driving the formation of buffer zones
as evolutionarily stable strategies that we investigate in the paper. Uncertainty can
be incorporated into the mechanistic behavioral rules. In the context of mechanistic
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Fokker-Planck movement models, the random component of movement is summa-
rized by a diffusion coefficient and the directed component by an advection term.
If movement terms retain uncertainty or randomness, then the ratio of advective to
diffusive movement will remain bounded. A more precise definition of this ratio will
be described by the term β in Sect. 3.

In an initial attempt at investigating the question of evolutionary significance of
space-use in a mechanistic territorial model, (Lewis and Moorcroft 2001) consider
an evolutionary game between wolf packs (Maynard Smith 1982), where each wolf
pack is assumed to operate as a cohesive unit, maximizing the expected number of
offspring produced in a single year by the alpha female (Schmidt and Mech 1997). An
interesting and ecological implication of the model is that the Evolutionarily Stable
Strategy (ESS) gives rise to an overlap of the territories rather than formation of a
buffer-zone. Thus it still remains to be explained how such a no wolf’s land can be
evolutionarily stable (Adler and Gordon 2003; Mesterton-Gibbons and Adams 2003;
Morrell and Kokko 2005; Börger et al. 2008).

One limitation of the Lewis and Moorcroft (2001) analysis is the assumption of
space-use strategies that are static in space, thus limiting the territorial shaping possi-
bilities. In other words, the rules in Lewis and Moorcroft (2001) cannot be modified
to vary as a function of distance from the den site. Hence the following question:
can allowing for spatially-dynamic space-use strategies that maintain an uncertain
component give rise to a buffer-zone? In this paper, we aim to apply differential
game theory (Isaacs 1965; Başar and Olsder 1999) as an appropriate and powerful
framework for addressing this issue. As a preliminary approach, we initially review
the approach of Lewis and Moorcroft (2001) by assuming that behavioral rules are
invariant in space (Lewis and Moorcroft 2001). We then extend this model to allow
strategies that vary spatially as a function of distance from the den site.

The paper is organized as follows. Section 2 addresses the above mentioned
u-game. Section 3 introduces the ecological model. Section 4 deals with a game
for the simple spatially invariant model, and points out the limits of this static theory.
Section 5 then states the open-loop nonzero-sum differential game that corresponds
to a spatially-dependent extension of the earlier static one. Section 6 summarizes the
results and finally, Sect. 7 is a discussion oriented towards future directions.

2 Definition and analysis of the u-game for space use

An initial investigation as to how territorial animals allocate space asks how space use
is allocated between two adjacent packs, when both packs are expected to individually
maximize space occupancy while avoiding neighbors.

Consider two equal-sized wolf packs, 1 and 2, moving on the segment [0, 1] (our
length unit), whose end points 0 and 1 are the locations of packs 1 and 2’s densities,
respectively.

2.1 Phenotypic evolution and game theory

According to Diekmann (2004), “The theory of phenotypic evolution comes in two
brands. The earliest is based on direct interaction and game theory, with evolution-
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ary success being measured in terms of (an often rather mysterious) pay off ”, see
Maynard Smith (1982). The body of the present paper enters in this category, so as
to express the central issue in the simplest possible way. A possible game-theoretical
shortcut consists in assuming that each pack is interested in minimizing the overlap
with itself and even more in minimizing the overlap with the other pack. ‘Minimiz-
ing the overlap with itself’ means avoiding over-occupying a given location, as, for
example, it may negatively affect resource density in this area. This can be expressed
as the following game

P1 : min
u1(·)

J1(u1(·), u2(·)) =
1∫

0

u1(x)(u1(x)+ ϑu2(x))dx, (1)

P2 : min
u2(·)

J2(u1(·), u2(·)) =
1∫

0

u2(x)(u2(x)+ ϑu1(x))dx, (2)

where ϑ > 1, subject to the constraints

1∫

0

u1(x) dx =
1∫

0

u2(x) dx = 1. (3)

The second brand, Adaptive Dynamics, makes phenotypic interactions indirect,
via an ecological feedback loop. (see Diekmann 2004 for an introduction to concepts,
ideas and methods developed by the authors of Dieckmann and Law 1996; Metz et al.
1996; Geritz et al. 1998 and others.) The latter brand incorporates density dependence
in a Darwinian fashion. In this way, “payoffs” are dynamic and endogenous to the
model, itself ecologically consistent and explicit.

Note that the replicator equation in evolutionary game theory nonetheless naturally
arises from frequency dependent population growth rates (see, e.g., Bernhard and
Hamelin 2009), and that “refined” game dynamics incorporating density dependence
also are very relevant (e.g., Vincent and Brown 2005; see Dercole and Rinaldi 2008
for a comparative analysis, and Auger and Pontier 1998 for an alternate approach,
accounting for behavioral plasticity).

Anyhow, even the “rough” game theoretical modelling shortcut is not necessarily
to be opposed to self-contained Adaptive Dynamics. Appendix A introduces an eco-
logical feedback loop and derives a “non-invasibilty” (Diekmann 2004) criterion that
includes prey, natural mortality, reproduction and interpack aggression. This results
in the same game (1)–(3), but with the interaction term given as

ϑ = 1 + α

σψ

r

ψ
, (4)

where r is the maximum growth rate for prey, α is the mortality rate arising from
hostile interactions from adjacent packs, ψ is the rate of prey consumption and σ is
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the conversion efficiency from prey into predators. Based on parameters for wolf pop-
ulations in Minnesota the interaction term is estimated as ϑ ≈ 3 (Appendix A).
The non-invasibility condition then defines a Nash equilibrium (see below) for
the game (1)–(3). Both modelling approaches thus lead to the same mathematical
problem.

2.2 Solution to the u-game

Any pair (u�1, u�2) that satisfies the following inequality is a Nash equilibrium:

∀ u1(·) ∈ U , J1(u
�
1(·), u�2(·)) ≤ J1(u1(·), u�2(·)),

∀ u2(·) ∈ U , J2(u
�
1(·), u�2(·)) ≤ J2(u1(·)�, u2(·)),

where U is the set of admissible ui (·)’s, i = 1, 2 , i.e., those which sum to unity (having
ui : [0, 1] �→ R

+).
A straightforward application of the minimum principle shows that a nontrivial

Nash equilibrium to the above u-game is a solution with constant total density u(x) =
u1(x) + u2(x) = 2, and no overlap O(u1, u2) = 0 (Appendix B). This solution,
corresponding to Pack 1 on the left and Pack 2 on the right, is thus given as

(
u∗

1(x) :=
{

2 if x ∈ [0, 1/2),
0 if x ∈ [1/2, 1]. , u∗

2(x) :=
{

0 if x ∈ [0, 1/2).
2 if x ∈ [1/2, 1].

)
.

Thus, the u-game gives rise to equitable partitioning of space, and no buffer zone
arises.

3 The ecological model

We now develop a mechanistic approach to movement modelling, based on the
Fokker–Planck equation. This will allow us to incorporate a new element into the
game, that of intrinsic unpredictabilty in the movement behavior. As we will show in
later sections, it is this element that is key to the formation of buffer zones. The Fok-
ker–Planck equation can be derived as an approximation for a large class of general
mechanistic models whose qualitative behavior is captured in the infinitesimal mean
(advection) and variance (diffusion) moments of a movement function describing step
sizes and directions. Details of this approximation are given in Moorcroft and Lewis
(2006).

3.1 Wolves’ space-use dynamics

Following the approach of Moorcroft and Lewis, movement of each pack is mod-
eled by a Fokker–Planck equation, with spatially varying diffusion coefficients di

and advection coefficients ci (Moorcroft and Lewis 2006). This arises from a random
walk governing individual behavior with bias towards the den-site. Packs 1 and 2’s
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probability distributions u1 and u2 are given by: ∀x ∈ (0, 1),

∂

∂t
u1(x, t) = ∂2

∂x2 (d1(x)u1(x, t))+ ∂

∂x
(c1(x)u1(x, t)),

∂

∂t
u2(x, t) = ∂2

∂x2 (d2(x)u2(x, t))− ∂

∂x
(c2(x)u2(x, t)),

(5)

where the di ’s and the ci ’s are functions that map space to R
+, respectively C2 and

C1. They respectively correspond to the random and directed (towards the den-site)
components of motion. Each of the above PDE’s is subject to zero-flux boundary
conditions at x = 0, 1:

∂

∂x
(d1(x)u1(x, t))+ c1(x)u1(x, t) = 0,

∂

∂x
(d2(x)u2(x, t))− c2(x)u2(x, t) = 0,

(6)

indicating that individuals remain in the [0, 1] spatial domain.
Lastly, as each probability density function, u1 and u2 must sum to one:

∀t,

1∫

0

u1(x, t)dx = 1 and

1∫

0

u2(x, t)dx = 1. (7)

3.1.1 Pattern of space-use, definition

We define a pattern of space-use u1 as a stationary solution of Eq. (5):

0 = d2

dx2 (d1(x)u1(x))+ d

dx
(c1(x)u1(x)), (8)

subject to zero-flux boundary conditions

d

dx
(d1(x)u1(x))+ c1(x)u1(x) = 0, (9)

for x = 0, 1. Similar equations hold for Pack 2’s stationary distribution u2, mutatis
mutandis.

Equations (8) and (9) yield: ∀x ∈ [0, 1],

0 = d

dx
(d1(x)u1(x))+ c1(x)u1(x), (10)

and one can equivalently consider: ∀x ∈ [0, 1],

0 = d

dx
u1(x)+ β1(x)u1(x), (11)
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where β1(x) = (dd1(x)/dx + c1(x))/d1(x) is a C1 function, provided d1 is not zero,
which we assume. The coefficient β1 can be considered as Pack 1’s control variable. In
other words, one may assume without loss of generality that d1 is a constant, in which
case the variation on β1 would reflect that of the advection coefficient c1. We shall
refer to the latter interpretation when discussing the ecological implications (Sect. 7).

We restrict ourselves to the biologically reasonable case where there is a net bias
towards the den-site (Moorcroft and Lewis 2006) and hence β1, β2 ≥ 0. It is also
natural to assume that, when movement retains an unpredictable nature, β1 will be
bounded from above by some maximum possible value, a, so that 0 ≤ β1, β2 < a.
Estimates can be made for β for red fox and coyotes for the simple case where both the
c1 and d1 are constant. These estimates can be found by taking the dimensional values
of β in Chapter 3 of Moorcroft and Lewis (2006) (with units km−1) and rescaling
them by the half width of a territory for a red fox (1 km) and a coyote (2 km): β ≈ 2
for red foxes and β ≈ 24 for coyotes. To the best of our knowledge, β has not been
estimated explicitly for wolves.

3.1.2 Expressing u1(x) in terms of an ODE

We introduce the notation u̇1 = du1/dx . Equations (11) and (7) now read

u̇1 = −β1u1, u(0) = u0
1, s.t.

1∫

0

u1(x)dx = 1.

Hence,

u1(x) = u0
1 exp

⎛
⎝−

x∫

0

β1(y)dy

⎞
⎠ ,

where u0
1 is given by the integral constraint (7).

For instance, if β1 is a constant, one obtains

u0
1 =

{
1 if β1 = 0,
β1/(1 − e−β1) otherwise,

so that

u1(x) =
{

1 ifβ1 = 0,
β1e−β1x/(1 − e−β1) otherwise.

The case β1 > 0 describes the so-called Holgate–Okubo home-range model where
space-use drops off exponentially with distance from the den-site (Moorcroft and
Lewis 2006). As it is clear that u1 is continuous with respect to β1, we shall omit to
specify the above singularity (β1 = 0 case) in what follows.
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4 The static game

In this section, we model wolf pack interactions as a static game, i.e., where the control
variables β1 and β2 are assumed invariant in space. We show that this provides only
limited insight as to the underlying behavioral mechanisms.

The game is thus the following:

P1 : min
β1∈R+ J1(β1, β2) =

1∫

0

u1(u1 + ϑu2)dx,

P2 : min
β2∈R+ J2(β1, β2) =

1∫

0

u2(u2 + ϑu1)dx,

where

u1(x) = β1e−β1x

1 − e−β1
,

u2(x) = β2eβ2x

eβ2 − 1
.

(12)

Note that J1(β1, β2) = J2(β2, β1). We are interested in finding a Nash equilibrium
(β�1, β

�
2).

4.1 Game solution

Equation (12) yields

J1(β1, β2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1

2

e2β1 + 2ϑβ1eβ1 − 1

e2β1 − 2eβ1 + 1
ifβ1 = β2,

β1

2

(β2 − β1)(eβ1+β2 + eβ2 − eβ1 − 1)+ 2ϑβ2(eβ2 − eβ1)

(β1 − β2)(eβ1 + eβ2 − eβ1+β2 − 1)
otherwise,

symmetrically for J2. The limit of the second term when β1 → β2 coincides with the
first term; the payoff functions are thus continuous. Define

B1(β2) = arg min
β1

J1(β1, β2) and B2(β1) = arg min
β2

J2(β1, β2),

as the best-response functions. Note that B2(β1) = B1(β1), due to the symmetry.
As we are interested in fixed territorial patterns, already resulting in pairs of wolf

distributions, let us focus on pure (non-randomized) equilibria only, and thus omit this
adjective from now on.

Numerically solving ∂ J1/∂β1 = 0 allows one to plot these best-response func-
tions, as shown in Fig. 2. A nontrivial intersection of the best-response curves exists
for ϑ > 2, but for ϑ ≤ 2, there is no intersection other than (0, 0). As the Nash equi-
libria are precisely given by the intersections of the best-response curves (Fudenberg
and Tirole 1991), this means that when ϑ ≤ 2, (0, 0), a pair of spatially uniform terri-
torial patterns, is the unique Nash equilibrium of the game. On the other hand, when
ϑ > 2, (0, 0)may not be the most relevant equilibrium, in the sense that the evolution-
ary dynamics of space use could have converged to the Holgate-Okubo home-range
equilibrium. (The evolutionary dynamics of space use are as yet unspecified, and are
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674 F. M. Hamelin, M. A. Lewis

Fig. 2 Best-responses curves of the game stated in Sect. 4, for several values of ϑ . The arrows represent
the best-response dynamics, as a caricature of evolutionary dynamics. ϑ = 20 is a rather extreme value that
was chosen to stress the general shape of the curves

caricatured in Fig. 2 by best-response dynamics; this point is further discussed in
Sect. 7). We are interested in this case because it corresponds to the emergence of
territories.

Rather than further analyzing this game, plotting the best-response curves reveals an
apparent paradox in the game. Figure 2 shows best-response curves that are increasing
functions over much of their domain. It means that, in this model, when one’s oppo-
nent draws back (or increases its β), then one also has to do so (most of the time).
Yet, it would have been expected that one spreads itself a bit more (or lowers its β) to
conquer the space left by its opponent. Moreover, a similar observation can be drawn
from Lewis and Moorcroft’s model (Lewis and Moorcroft 2001). Thus this seemingly
paradoxical feature is not particular to our model. The explanation lies in the fact that
when the opponent concentrates its forces on its side, the other pack cannot invade the
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territory left at the center without also increasing its presence at the place where the
opponent is very likely to be encountered. This is likely due to the fact that the pack’s
pattern of space use belongs to a one-parameter family of curves (see Eq. (12)). Thus,
the pack cannot cleverly modulate its distribution. However, animals likely adjust
their propensity to retreat as a function of the distance they are from their den-site.
To take this into account, one has to allow β for depending on x , and this amounts to
considering a differential game.

4.2 On open- and closed-loop formulations

One may point that β, or the propensity wolves have to retreat, should also be allowed
to depend on u (and h) the densities of competing packs (and prey, possibly, see
Appendix A), rather than on the independent variable x (the distance from the den-
site) alone. Control theoreticians refer to a closed-loop, or state-feedback, control, as
opposed to an open-loop one (see, e.g., Olsder 2001). By doing so, one would allow
for dynamic information (Başar and Olsder 1999). In this way, players would be able
to exert an influence on their opponents actions (yet not on their sovereign strategies)
through partially controlling the information. The point is that it would change the
nature, thus likely the outcome, of the game.

Unfortunately, in this particular case, the dynamics are to be stated as a two-point-
boundary-value-problem (see Eq. (13) in Sect. 5), and such a formulation does not
immediately fit into the Hamilton–Jacobi–Bellman/Isaacs theory (see, e.g., Hamelin
and Bernhard 2008). Addressing the game in closed-loop is thus left for future research
(see the end of Appendix B for a starting point).

In this paper, we aim to show that considering the propensity wolves have to retreat
β as a function-valued trait (Dieckmann et al. 2006; Parvinen et al. 2006) (depending
on the distance from the den-site x only) is sufficient to explain the occurrence of a
buffer-zone.

5 A nonzero sum differential game in open-loop

We now consider the case where the spatial control variables β1 and β2 depend explic-
itly on space. In this case each pack can modulate its spatial movement as a function
of location.

5.1 Game statement

In what follows, we use new variables u3 and u4 to ensure that u1(x) and u2(x)
integrate to unity over the domain (7). Let

u3(x) =
x∫

0

u1(z)dz and u4(x) =
x∫

0

u2(z)dz.
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Consider the following dynamics du/dx = u̇ = f (u, β1, β2):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇1 = −β1u1, u1(0) = u0
1, u1(1) = u1

1, β1 ∈ [0, a], u0
1 > 0,

u̇2 = +β2u2, u2(0) = u0
2, u2(1) = u1

2, β2 ∈ [0, a], u1
2 > 0,

u̇3 = u1, u3(0) = 0, u3(1) = 1,

u̇4 = u2, u4(0) = 0, u4(1) = 1,

(13)

where u0
1, u1

1, u0
2, u2

2 are the names given to the boundary values associated to u1 and
u2, as they result from the above equation.

The game is the following:

P1 : min
β1(·)

J1(β1(·), β2(·)) =
1∫

0

	1(u(x))dx, 	1(u) = u1(u1 + ϑu2),

P2 : min
β2(·)

J2(β1(·), β2(·)) =
1∫

0

	2(u(x))dx, 	2(u) = u2(u2 + ϑu1),

(14)

subject to (13) and where ϑ > 1. Define the Hamiltonian associated to each player’s
control problem as follows:

H1(u, β1, β2, λ) = 〈λ, f (u, β1, β2)〉 + 	1(u),

= −λ1β1u1 + λ2β2u2 + λ3u1 + λ4u2 + u1(u1 + ϑu2),

H2(u, β1, β2, μ) = 〈μ, f (u, β1, β2)〉 + 	2(u),

= −μ1β1u1 + μ2β2u2 + μ3u1 + μ4u2 + u2(u2 + ϑu1).

(15)

The manifolds Mi , i = 0, 1, define the boundary conditions for u3 and u4 by
Mi = {u3 = i, u4 = i} (see Eq. 13). We use the � superscript to denote optimal
policies or trajectories.

Given a continuousβ�2(·), Pontryagin’s minimum principle (PMP) (Pontryagin et al.
1962) states that if a policy β�1(·) generating a trajectory u�(·) is to be optimal, then
there exists an absolutely continuous adjoint trajectory λ(·) such that

λ̇(x) = −∇u H1(u
�(x), β�1(x), β

�
2(x), λ(x)), λ(0) = ν0, λ(1) = ν1,

s.t. ∀x ∈ [0, 1] where β�1(·) is continuous,

H1(u
�(x), β�1(x), β

�
2(x), λ(x)) = min

β1∈[0,a] H1(u
�(x), β1, β

�
2(x), λ(x)),

and where the νi ’s are normal to the Mi ’s manifolds (their nonzero components are
to be determined). Similar equations hold for player 2.

The above minimization condition translates into the following switch-functions

σ1 = ∂H1/∂β1 = −λ1u1,

σ2 = ∂H2/∂β2 = +μ2u2,
(16)
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and the bang-bang optimal policy:

β�1 =
⎧⎨
⎩

a if σ1 < 0,
any β1 ∈ [0, a] if σ1 = 0, (singular control)
0 if σ1 > 0,

similarly for player 2.
Based on our previous discussion, it turns out that two of our modelling assump-

tions regarding continuity of movement terms with respect to space may technically
be violated. However, we do not expect this pose a problem with the analysis, as
explained below.

(i) the assumption made in Sect. 3 that β1 is, through c1 and d1, C1. As argued
by White et al. (1996), although allowing for a discontinuity in the advection
term technically violates a flux conservation law, the connection with Eq. (8) can
always been made, at the end of day, through smoothing β1 around its possible
discontinuity. Stating the game with such a smoothness constraint on the control
would thus add unworthy difficulties, as the present game makes sense.

(ii) the assumption that β�2(·) is continuous in the above PMP statement. Indeed, the
difference with a classical control problem lies in the fact that the opponent is
very likely to induce endogenous discontinuities in the dynamics (13). However,
as players are assumed to use open-loop controls (as defined in Sect. 4.2), no
discontinuity in the adjoint variables is to be expected (see, e.g., Olsder 2001).

We continue by writing the adjoint equations associated to player 1,

⎧⎪⎪⎨
⎪⎪⎩

λ̇1 = −∂H1/∂u1 = +λ1β1 − λ3 − 2u1 − ϑu2, λ1(0) = 0, λ1(1) = 0,
λ̇2 = −∂H1/∂u2 = −λ2β2 − λ4 − ϑu1, λ2(0) = 0, λ2(1) = 0,
λ̇3 = −∂H1/∂u3 = 0, λ3(0) = γ0, λ3(1) = γ1,

λ̇4 = −∂H1/∂u4 = 0, λ4(0) = ε0, λ4(1) = ε1,

(17)

and to player 2,

⎧⎪⎪⎨
⎪⎪⎩

μ̇1 = −∂H2/∂u1 = +μ1β1 − μ3 − ϑu2, μ1(0) = 0, μ1(1) = 0,
μ̇2 = −∂H2/∂u2 = −μ2β2 − μ4 − 2u2 − ϑu1, μ2(0) = 0, μ2(1) = 0,
μ̇3 = −∂H2/∂u3 = 0, μ3(0) = ζ0, μ3(1) = ζ1,

μ̇4 = −∂H2/∂u4 = 0, μ4(0) = δ0, μ4(1) = δ1.

(18)

One sees that γ0 = γ1 = γ , δ0 = δ1 = δ, ε0 = ε1 = ε, ζ0 = ζ1 = ζ , thus λ3 = γ ,
λ4 = ε, μ3 = ζ and μ4 = ε. Rewrite the adjoint Eqs. (17),

{
λ̇1 = +λ1β1 − γ − 2u1 − ϑu2, λ1(0) = 0, λ1(1) = 0,
λ̇2 = −λ2β2 − ε − ϑu1, λ2(0) = 0, λ2(1) = 0,

(19)
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and (18),

{
μ̇1 = +μ1β1 − ζ − ϑu2, μ1(0) = 0, μ1(1) = 0,
μ̇2 = −μ2β2 − δ − 2u2 − ϑu1, μ2(0) = 0, μ2(1) = 0.

(20)

As u1 and u2 are strictly positive, we shall refer to ς1 = −λ1 and ς2 = μ2 as the
switch-functions associated with players 1 and 2 respectively (instead of σ1 and σ2,
see Eq. (16)).

5.2 Game solution

First, notice that if Pack 2 plays 0 at any x ∈ [0, 1] (is uniformly distributed), then
there is no incentive for Pack 1 to attempt avoiding Pack 2 (each location being at the
same risk level). Since the uniform distribution is the one which allows Pack 1 for
minimizing the overlap with itself (or maximizing space occupancy, see Sect. 2.1), it
follows that (0, 0) (the pair of uniform distributions) is a Nash equilibrium. Yet, as
already mentioned in Sect. 4, addressing the static game, this may not be the most rele-
vant equilibrium; otherwise territories would not be observed. A preliminary analysis
(Appendix C.1) shows that among nonsingular solutions, the only possible alternative
is both packs play a for every x ∈ [0, 1].

In this section, we investigate possible one-switch bang-bang singular solutions of
the game stated in Sect. 5, see Eqs. (13) and (14). More accurately, we address the
existence of a solution in which player 1 switches from a singular control β̃1(·) to
β1 = a forward in space (moving to the right), and player 2 conversely. Two scenarios
are to be considered: either players’ singular control x-range overlap, in which case we
shall refer to an overlap scenario, or there is no bisingular component in the solution,
in which case we shall refer to a buffer scenario.

In other words, the buffer-zone is defined as a separating region where both packs
play full “advection” a, i.e., that each pack avoids.

Let us divide the [0, 1] spatial domain into three parts: [0, xl] (Pack 1’s territory, to
the left), [xl, xr] (the possible buffer-zone or overlap region, at the center) and [xr, 1]
(Pack 2’s territory, to the right).

5.2.1 To the left

Consider the dynamics (13), where β1 = β̃1 (a singular control to be determined) and
β2 = a. As ς1 = −λ1 has to be zero on the singular arc followed by player 1, one
must have λ̇1(0), which yields, after Eq. (19),

γ = −2u0
1 − ϑu0

2. (21)

Equation (19) then reads

λ̇1 = 2(u0
1 − u1)+ ϑ(u0

2 − u2) = 0. (22)
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Therefore, despite the fact that β̃1 is not yet determined, one gets an explicit expres-
sion of Eq. (13):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(x) = u0
1 + ϑ(u0

2 − u2(x))/2,

u2(x) = u0
2eax ,

u3(x) = u0
1x + ϑu0

2(x + (1 − eax )/a)/2,

u4(x) = u0
2(e

ax − 1)/a.

(23)

We shall also make use of the following explicit solution of Eq. (20) in the sequel:

aμ2(x)=(δ + ϑu0
1)(e

−ax − 1)+u0
2(e

−ax (1+ϑ2/4)−eax (1−ϑ2/4)−ϑ2/2). (24)

Characterizing the singular control. Since Eq. (22), we know that the singular con-
trol is such that 2u1 + ϑu2 is invariant. Using Eq. (13), this reads 0 = 2u̇1 + ϑ u̇2 =
−2β̃1u1 + ϑau2, hence:

β̃1(x) = a
ϑ

2

u2(x)

u1(x)
, (25)

where u1 and u2 are given by Eq. (23). Notice that dβ̃1(x)/dx > 0.

5.2.2 To the right

Consider the dynamics (13), where β1 = a and β2 = β̃2 (a singular control to be
determined). Proceeding as in Sect. 5.2.1, one gets

δ = −2u1
2 − ϑu1

1, (26)

an explicit expression of Eq. (13)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(x) = u1
1ea(1−x),

u2(x) = u1
2 + ϑ(u1

1 − u1(x))/2,

u3(x) = 1 + u1
1(1 − ea(1−x))/a,

u4(x) = 1 + u1
2(x − 1)+ ϑu1

1((e
a(1−x) − 1)/a + x − 1)/2,

(27)

an explicit solution of Eq. (19) that we shall use later

aλ1(x) = (γ + ϑu1
2)(1 − ea(x−1))+ u1

1(e
a(1−x)(1 − ϑ2/4)

− ea(x−1)(1 + ϑ2/4)+ ϑ2/2), (28)

and the expression of the singular control

β̃2(x) = a
ϑ

2

u1(x)

u2(x)
, (29)

where u1 and u2 are given by Eq. (27). Notice that dβ̃2(x)/dx < 0.
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5.2.3 At the center: buffer scenario

Consider the dynamics (13), where β1 = a, β2 = a and x ∈ [xl, xr]. We shall use
a superscript l or r to denote the value taken by a given variable at points xl or xr,
respectively.

We are interested in solving the following system of equations, whose first part
below translates the connection of (23) to (27) through the buffer-zone (as the dynam-
ics (13) can be decomposed in two autonomous systems of ODEs, according to odd
and even subscripts):

u1
1ea(1−xl)=u0

1 + ϑ(u0
2 − ul2 )/2 where ul2 = u0

2eaxl , (30)

u0
2eaxr =u1

2 + ϑ(u1
1 − ur1 )/2 where ur1 = u1

1ea(1−xr), (31)

1 + u1
1(1 − ea(1−xl))/a =u0

1xl + ϑu0
2(x

l + (1 − eaxl)/a)/2, (32)

u0
2(e

axr−1)/a =1+u1
2(x

r−1)+ϑu1
1((e

a(1−xr)−1)/a+xr−1)/2. (33)

The second part consists in maintaining the continuity of the adjoint variables all along
the trajectory followed, as required by Pontryagin’s minimum principle (Sect. 5.1).
After Eqs. (20) and (24), one obtains the following equality

aμ2(x
l) = −δ(1 − ea(xr−xl))− ur2 (e

a(xl−xr) − ea(xr−xl))

+ aϑur1 (x
r − xl)ea(xr−xl),

= (δ+ϑu0
1)(e

−axl−1)+u0
2(e

−axl(1+ϑ2/4)−eaxl(1−ϑ2/4)−ϑ2/2),

(34)

where ur2 = u0
2eaxr . Similarly, Eqs. (19) and (28) yield

aλ1(x
r) = γ (1−ea(xr−xl))+ul1 (e

a(xl−xr)−ea(xr−xl))+aϑul2 (x
l − xr)ea(xr−xl),

= (γ+ϑu1
2)(1 − ea(xr−1))+ u1

1(e
a(1−xr)(1 − ϑ2/4)

− ea(xr−1)(1 + ϑ2/4)+ ϑ2/2), (35)

where ul1 = u1
1ea(1−xl). We take ε and ζ such that λ2 and μ1, respectively, are con-

tinuous (γ and δ were fixed by Eqs. (21) and (26), respectively). There are

– six equations: (30), (31), (32), (33), (34), (35), and
– six unknowns: xl ∈ [0, 0.5], xr ∈ [0.5, 1] and u0

1, u0
2, u1

1, u1
2 ∈ R

+.

One can perform numerical computations and see whether there is an admissible
solution. If so, one has moreover to verify that

(i) the switch-functions have the right sign, i.e. ς1 = −λ1, which is zero to the left,
must be negative elsewhere, symmetrically for player 2,

(ii) the singular controls are admissible, i.e. ∀x ∈ [0, xl], β̃1(x) ∈ [0, a], symmet-
rically for player 2 (see Eqs. (25) and (29)),

to claim a Nash equilibrium in open-loop.
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5.2.4 A numerical example

For instance, taking ϑ = 5 and a = 5 yields u0
1 = 2.45, u1

1 = 0.05, u0
2 = 0.05,

u1
2 = 2.45, xl = 0.25 and xr = 0.75 as an approximate solution. To our knowledge,

there is no other admissible solution to the above system of equations for these param-
eter values. Figure 3 (left column) illustrate this result. The superscript � denotes the
trajectory of a given variable under the scenario associated to the considered solution.
The vertical lines correspond to x = xl and x = xr. After Fig. 3 (lower center panel),
we see that the switch functions ς1 = −λ1 and ς2 = μ2 have the right sign. Moreover,
one sees through Fig. 3 (lower left panel) that the singular controls are admissible.
There is no contradiction, hence the Nash equilibrium.

We proceeded to do the same computations for a wide range of parameters and it
turned out that each time a solution was admissible, it was unique and symmetric, i.e.,
such that u0

1 = u1
2, u1

1 = u0
2 and xl = 1 − xr.

5.2.5 A focus on symmetric solutions

Assuming u0
1 = u1

2, u1
1 = u0

2 and xl = 1 − xr, the above system of six equations
reduces to a three equations one, whose solution can be expressed as follows:

u1
1 = a/((1 + axl)ea(1−xl) + ϑ(1 + (axl − 1)eaxl)/2 − 1),

u0
1 = u1

1(e
a(1−xl) + ϑ(eaxl − 1)/2),

(36)

where xl is solution of

0 = aϑ(2xl − 1)ea(2xl+1) + (ϑ − 2)ea(xl+1) + e2a +
(

1 − ϑ2

4

)
e2axl

+ϑ
2
(ϑ − 2)e3axl − ϑ2

4
e4axl .

Define the width of the buffer zone as w = 1 − 2xl. The reason why we introduce
the above awkward implicit form is that it nonetheless allows one to see that when
ϑ = 2, xl = 0.5 (or equivalently w = 0) is solution of the above equation whatever
the value of a. This can be guessed from Fig. 4, which shows thatw is decreasing in a,
and increasing in ϑ . No solution arises for ϑ < 2. Another guess can be drawn from
Fig. 4: when a → ∞, w → 0, whatever ϑ (see also Fig. 3, upper center panel). This
is consistent with the u-game analysis made in Appendix B.

5.2.6 The ϑ = 2 case

Figure 3’s right column illustrate the ϑ = 2 case. The superscript � and the vertical
lines keep the same meaning as before. First, one sees that there is no discontinuity in
β�1(x) and β�2(x), thus neither in u�1(x) and u�2(x). Indeed, as seen earlier, xl = 0.5
whatever a. Moreover, one has u1

1 = e−a/2 and u0
1 = 2 − x1

1 , hence β̃1(.5) = a (after
Eqs. (36) and (25)). Second, notice that ∀x ∈ [0, 1], u�1(x) + u�2(x) = 2. Indeed,
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Fig. 4 After Sect. 5.2.5: the
width of the buffer zone w as a
function of a and ϑ

one has ∀a ∈ R
+, ∀x ∈ [0, 0.5], u2(x) = ea(x−1/2) and u1(x) = 2 − u2(x), sym-

metrically for x ∈ [0.5, 1]. Lastly, it appears that λ�1(x) and μ�2(x) are zero all along
the trajectory, whose half only was deliberately singularized. Appendix C.2, which
excludes the possibility of an overlap, substantiates this observation also.

6 Summary

In this paper, our aim was to overstep the limit that faces the static game theoretical
approach in analyzing mechanistic models for territoriality. Stating the simplest of
the territorial games as a differential one, we showed that its solution-range is signif-
icantly richer than that of its static counterpart. More accurately, we considered two
parameters

– a, the maximum retreating speed relative to the uncertainty (randomness) associ-
ated with animal movement

– ϑ , a penalty for encountering hostile conspecifics

as determinants of territorial space use. Several kinds of territorial patterns arise:

– either ϑ < 2 and there is a unique, trivial, equilibrium, which results in a pair of
spatially uniform distributions,

– or ϑ ≥ 2 and other equilibria appear:
– either ϑ = 2 and any pair of strategies which yields a uniform overall wolf

density (∀x ∈ [0, 1] , u1(x)+ u2(x) = 2) constitutes a Nash equilibrium (this
includes both the trivial equilibrium and the territorial pattern drawn in Fig. 3,
upper right panel),

– or ϑ > 2 and a buffer-zone takes shape; ϑ and a have antagonistic (positive
and negative, respectively) effects on the width of the no-wolf’s land, although
the greater a, the more pronounced the territories boundaries.
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The fact that there is a bifurcation at ϑ = 2 in terms of the appearance of another equi-
librium makes sense since it also happened in the static game (see also Appendix B,
addressing an oversimplified version of this game).

We do not claim having found all the possible Nash equilibria. Yet, the picture we
draw is quite rich, makes sense, and has no empty space.

Have we solved the apparent paradox found in the static game i.e., the fact that if
one’s opponent draws back, then one also has to draw back, see Sect. 4)? In a sense,
as we saw that if a was allowed to go to infinity, then the dynamic framework would
allow for enough flexibility to conquer the space left by the opponent without biting
into its reinforced territory. Yet, the fact that a is actually finite still allows for such
a phenomenon. The resulting territorial buffer zones arise from the limited ability of
packs to draw back abruptly at the edge of their territorial boundary. The dynamic
analysis thus substantiates the static game’s seemingly paradoxical feature.

Considering the non genericϑ = 2 case as a limiting one, the main ecological impli-
cation of our model is that allowing for spatially dynamic motion strategies gives rise
to a buffer-zone. More accurately, let us refer to the ecological definition of a buffer-
zone, i.e., a separating area where the overall wolf density u1 + u2 is reduced. As the
static game also yielded a so defined buffer-zone, how can we hold such an assertion?
Is not the dynamic analysis just a refinement over the static one? It is not, as the static
game formulation a-priori assumed a buffer-zone (it is easy to see that u1 + u2 is
convex whatever the game solution, see Eq. (12)). As the dynamic formulation clearly
allows for a concave overall wolf density, our model gives rise to a buffer-zone.

7 Discussion

This paper shows how buffer zones can arise as solutions to spatial games, provided
there is sufficiently large penalty for interacting with neighboring packs, rather than
fellow pack members. The strict threshold of ϑ = 2 arises from the quadratic nature of
the objective function. In turn, this objective function can be built from first principles,
as outlined in Appendix A. As shown in Eq. (43), ϑ > 2 is equivalent to the condition
π > 1 (Eq. (42)). This inequality can be interpreted as

α

σψ
>
ψ

r
. (37)

In other words, the buffer zone can arise if the cost to reward ratio associated with
buffer zone interactions exceeds the impact of wolf predation on deer resource in the
core region of the territory.

Given that the buffer zone exists, its width depends upon the maximum possible
value a for the movement bias termβ. This can be interpreted as the maximum possible
level of directed component of animal movement c(x), relative to the uncertainty (ran-
domness) associated with animal movement d(x). The limiting case, where a becomes
large, gives rise to a solution with distinct non-overlapping territories exhibiting abrupt
edges (see Fig. 3, upper center panel).
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Also, let us stress that our model can be tested via estimating the value ofϑ = 1+π ,
as done in Appendix A, where we found ϑ ≈ 3 for wolves. For this value of ϑ , our
model predicts territories should be separated by a buffer-zone, and the width of the
buffer zone is a function of the maximum possible value a that the movement bias
term β can attain. Reports of buffer zones for wolves in Minnesota indicate that they
can take up to 1/4 of the total region (Mech 1977). Based on Fig. 4, this would suggest
a value of a close to 10 for wolves.

It is interesting to contrast territorial patterns of Minnesota wolves (with wide buffer
zones comprising up to 25% of the total area) (Mech 1977) to those of badgers (where
there are distinct and abrupt edges to territories, marked by a distinct trail, and with
little of either overlap or buffer zone between territories) (Kruuk 1989) (and Figure 5.6
of Moorcroft and Lewis 2006, compare also with Fig. 3, upper center panel). Contrib-
uting factors may be that (i) badger territories are much smaller than wolf territories
relative to movement rates, taking only minutes to travel across as opposed to several
hours (ii) badgers typically eat prey with little mobility (e.g., earthworms) (Kruuk
1989), rather than the highly mobile deer that may actively evade capture. The first
of these factors suggests that, for badgers, c(x)may be large relative to typical length
and time scales; the second that d(x) may be less pronounced for badgers grazing on
earthworms than for wolves possibly engaged in pursuit and evasion dynamics with
highly mobile prey. The result is a larger likely value of a for badgers.

An alternative to the mechanistic random walk approach is to simply calculate opti-
mal spatial allocation of foraging effort between competing groups. This approach,
given in Sect. 2, yields an equitable partitioning of space with neither a buffer zone
nor territorial overlap. Moreover, we would not expect such an approach to have led to
the same explanation for buffer zones. Buffer zones of significant width rely on there
being a constraint in the mechanistic model. That is, the ratio of directed to random
movement β must not exceed an upper bound a. In other words, movement patterns
cannot be entirely predictable. There must be a random component d that describes
the inherent uncertainty in how individuals move around their territories. When this
component is sufficiently large then β will remain bounded.

There are several unusual aspects to the approach we have taken in this paper. First,
the progression from a mechanistic random walk model for individual behavior to a
partial differential equation model for space use to an ordinary differential equation
with an integral constraint for the resulting space use is unusual (but see Moorcroft
and Lewis 2006). Interpreted in the context of a spatial game, this ordinary differential
equation with an integral constraint is then transformed to a two-point boundary value
problem, whose dynamics form the foundation for a nonzero sum differential game in
open-loop. Finally, bilateral application of the Pontryagin’s minimum principle gives
rise to conditions for formation of buffer zones via spatial games.

Possibilities for future research include:

– In the static game: specifying the evolutionary game dynamics so as select an equi-
librium, i.e., so as to determine the circumstances under which there one observes
the emergence of territories (see Sect. 4.1). However, the fact that the strategy set is
a continuum makes the replicator dynamics approach rather challenging (see, e.g.,
Shaiju and Bernhard 2009, for an insight on the induced difficulties). Nevertheless,
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Adaptive Dynamics theory would definitely deal with such a continuous trait, pro-
vided one specifies an ecological feedback loop. We did so in Appendix A to
prepare a non-invasibility analysis. Future work could extend non-invasibility to
include the evolutionary dynamics (see, e.g. Diekmann 2004).

– A closely related issue is that of territories emergence as a game solution if one
relaxes the a-priori den-site hypothesis (Briscoe et al. 2002). In our model, it
consists in relaxing the β1, β2 ≥ 0 hypothesis (see Sect. 3.1.1 ), by allowing
β1, β2 ∈ [−a, a]. In this way, there is no bias towards an a-priori determined
direction. Notice that, although the preliminary discussion (eliminating some pos-
sible solutions, see Sect. C.1) no longer holds, the Nash Equilibrium we find in
this paper still does hold in this context (as the singular control cannot saturate to
zero, see Eqs. (25) and (29)). Moreover, the trivial equilibrium consisting of two
uniform distributions corresponds to a bisingular trajectory along which zero is
never played as a lower bound.

– Considering an asymmetry between the wolf packs. Actually, relaxing the symme-
try (or the equal-sized/strength packs) hypothesis is not a difficulty: it suffices to
introduce a discrimination between the two packs, e.g., distinct ϑ1 and ϑ2 through-
out the paper. The resulting equations hold as, actually, no symmetry was required.
Although the solution analysis is more complicated, this issue may typically be of
some relevance regarding wolves–coyotes interactions (see Moorcroft and Lewis
2006, Chapter 9).

– Allowing the prey to enter the game. If the prey were allowed to move, then the
way they would do so should depend on the local predator density, and vice-versa,
which would result in introducing a third player.

– Allowing the prey-capture/adjacent-pack-encounter rates to depend on the rates at
which location changes occur (which involve the advection and diffusion coeffi-
cients), as in McKenzie et al. (2009).

– Including explicit scent-marking in the game. As argued in Sect. 4.2, the fact that
the packs communicate on their respective positions may have an incidence on the
territorial conflict outcome. It is not clear whether scent-marking-related behav-
ior would still (as compared to Lewis and Moorcroft 2001) promote overlapping
territorial patterns if it was considered as a function-valued trait. As Lewis and
Moorcroft (2001) suggested, scent-marking behavior might result in a “bluffer-
zone.”

Acknowledgments We thank Pierre Bernhard for his comments on an earlier version of the manuscript.
FMH is grateful to the Lewis Research Group (2007/08 season) for the feedback provided during the lab
meetings. Thanks to Paul Moorcroft for creating the image in Fig. 1.

Appendix A: An ecological feedback loop

In this section, our aim is to make explicit the way wolf pack interactions affect wolf
dynamics, so as to refer to Darwinian evolutionary (or adaptive) dynamics as a process
having possibly shaped territorial patterns.

More accurately, we are interested in finding a non-invasible trait (Diekmann 2004),
say β�, which describes the ratio of directed to random movement as a function of
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distance from den site. In other words, given a resident population (Pack 2) with trait
β2(x) = β�(1 − x), which, in turn, defines the resident’s territorial space use pattern
u�2(x), a mutant neighbor (Pack 1) that deviates from β1 = β�(x) will not grow. At
this equilibrium point, wolf densities are assumed to be stationary, distributed accord-
ing to territorial patterns u�1 and u�2, and the packs are assumed to be of equal size.
Symmetry in the problem translates to u�1(x) = u�2(1 − x) ∀x ∈ [0, 1]. Our focus is
on identifying this non-invasive equilibrium point. The broader question is whether
evolutionary dynamics would converge to such an equilibrium point. This is beyond
the scope of this paper and is raised as future research possibilities.

Deer are the primary food item for wolves in northeastern Minnesota, where the
territorial buffer zones have been most widely observed (Hoskinson and Mech 1976).
Thus the growth-rate of a wolf pack is related to the number of deer it captures over
a year. We assume the deer population grows logistically in absence of wolf-induced
predation and that the predation rate is bilinear in the wolf and deer abundances. Given
a predation pressure u1 + u2, the deer density h follows:

∀x ∈ [0, 1], d

dt
h(x, t)=rh(x, t)

(
1− h(x, t)

K

)
−ψ(u1(x)+u2(x))h(x, t), (38)

where r is the Malthusian parameter (rate of maximum population growth), K is the
carrying capacity, and ψ a predation rate. This model is the continuous-time equiv-
alent of the one used previously by researchers (Lewis and Murray 1993; Lewis and
Moorcroft 2001) (see, for example, de Vries et al. 2006 for a connection between the
Beverton–Holt model used in Lewis and Murray 1993; Lewis and Moorcroft 2001
and the logistic equation used here). The deer are territorial and are not assumed to
shift territories in response to wolf predation. This is consistent with available obser-
vations (Hoskinson and Mech 1976).

Reproductive success through to the next generation takes several years, as it
requires sufficient food through conception, gestation, weaning survival and juvenile
survival periods. Thus the long-term growth rate of the pack depends on deer intake
averaged over several years. However, the deer population density may also adjust to
wolf predation on the same time scale, so that wolf foraging decisions made early may
affect the availability of deer later. A fully detailed model would include these time
scales and the reproduction events. However, for the sake of producing an analytically
tractable and transparent formulation, we consider two possible simplifications (i) deer
density is assumed to respond quickly to the predation pressure exerted, relative to the
time scale of reproduction of wolves (ii) deer density is assumed to respond slowly to
the predation pressure exerted relative to the time scale of reproduction of wolves.

The first case, that of rapid response of the deer density to wolf predation is mod-
elled by a quasi-steady state assumption for (38) (see also Lewis and Moorcroft 2001).
We define h∗(x) = h(x)/K to be a stationary solution of the above equation, scaled
by the carrying capacity K , that maps predation pressure to a deer density. Dropping
the asterisk for notational simplicity, we have

h(u1(x)+ u2(x)) = min

{
0, 1 − ψ

r
(u1(x)+ u2(x))

}
. (39)
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Then, given a pair of territorial patterns (u1(x), u2(x)) and the corresponding deer
stationary distribution h(x), Pack 1’s relative growth rate can be expressed as follows:

G1 =
1∫

0

σψu1(x)h(u1(x)+ u2(x))dx −
1∫

0

αu1(x)u2(x)dx − μ0, (40)

whereμ0 is the wolves’ natural mortality rate, α is a death rate associated to inter-pack
aggression, and σ is the rate of conversion of prey into offspring.

The second case, that of slow response of deer density to wolf predation would
ignore the feedback between the behavior of Pack 1 and the deer density, assuming
that the environmental conditions are as set by the resident u2(x) only. This corre-
sponds with substituting Eq. (40) by

G̃1 =
1∫

0

σψu1(x)h(u2(1 − x)+ u2(x))dx −
1∫

0

αu1(x)u2(x)dx − μ0.

For the purposes of this paper, we choose the first simplification and, using Eq. (39),
obtain

G1 = −μ0 + σψ −
1∫

0

u1(x)

(
σψ2

r
u1(x)+

(
σψ2

r
+ α

)
u2(x)

)
dx .

Definition We shall say that u2 is non-invasible, and will denote it by the superscript
�, if u1(x) = u2(1 − x) locally maximizes (among the set of admissible u1(·)’s) the
above growth rate, or equivalently locally minimizes the following criterion:

J1 =
1∫

0

u1(x)

(
u1(x)+

(
1 + αr

σψ2

)
u2(x)

)
dx . (41)

Note: In our formulation, the wolf growth rate is based on the quasi-steady state
assumption for deer. In other words, it is calculated based on the updated stationary
distribution of deer, assuming the transient deer dynamics does not affect packs’ den-
sities. Thus, strictly speaking, “the environmental conditions [are not] as set by the
resident” only. This is a deviation from Diekmann (2004)’s definition of non-invasi-
bility, but the two definitions become similar under the assumption given for Eq. (41),
that is, the characteristic time for deer density equilibration is much shorter than for
wolf reproduction.

Rather than focusing on an instantaneous growth rate, another possibility would
have been to consider the expected number of offspring produced in a single year by
the alpha female, as Lewis and Moorcroft (2001) do, in a semi-discrete framework. In
other words, they consider the number of prey that will be captured as a function of the
deer and wolf distributions just after reproduction in spring, times the probability that
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the alpha female survives the year, given a pair of territorial patterns. Our criterion is,
as opposed to that of Lewis and Moorcroft (2001), additive, and thus fits into the exist-
ing differential game theoretical framework. Although Lewis and Moorcroft (2001)’s
formulation makes more sense for wolves, the above formulation may nevertheless
be relevant for other, continuous-time reproduction processes species, such as ants for
instance (Adler and Gordon 2003). Also, Lewis and Moorcroft (2001)’s formulation
and ours’, yield, at least in the static game, qualitatively similar results (see Sect. 4).

In addition, our criterion depends on a unique parameter,

π = α

σψ

r

ψ
. (42)

It can be interpreted as a penalty for encountering foreign-pack members; the greater
the deer recovery rate r/ψ and the greater the cost over reward ratio α/σψ , the lower it
is worthy taking the risk to encounter a hostile conspecific. Moreover,π is quantifiable.
Indeed, according to Lewis and Moorcroft (2001), one gets the following estimates
for wolves (Canis lupus) interacting with white-tailed deer (Odocoileus virginianus)
populations in Minnesota: α = 0.69, ψ = 0.15, r = 0.69 and σψ = log(5), which
yields π ≈ 2. The value of π is likely highly variable across the numerous species
that show territorial behavior (Adams 2001).

Lastly, notice that the connection with the body of the paper is given by the relation

ϑ = 1 + π. (43)

Appendix B: A brief analysis of an elementary companion game

In this section, we address a u-game (see below) as an oversimplified version of the
β-game addressed in the body of the paper. Our aim is to check whether the u- and
β-games’ solutions are consistent.

We call u-game the following problem:

P1 : min
u1(·)

J1(u1(·), u2(·)) =
1∫

0

u1(x)(u1(x)+ ϑu2(x))dx,

P2 : min
u2(·)

J2(u1(·), u2(·)) =
1∫

0

u2(x)(u2(x)+ ϑu1(x))dx,

subject to

u̇3 = u1, u3(0) = 0, u3(1) = 1,

u̇4 = u2, u4(0) = 0, u4(1) = 1,
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where u1, u2 ∈ R
+ are the players’ controls, u3, u4 being state variables whose

dynamics ensure that u1 and u2 both sum to unity. We are interested in finding a Nash
equilibrium (u�1, u�2).

Proceeding as in the body of the paper, we define the Hamiltonians as follows

H1 = u1(u1 + ϑu2)+ u1λ1 + u2λ2,

H2 = u2(u2 + ϑu1)+ u1μ1 + u2μ2,

the λi ’s and μi ’s, i = 1, 2, being adjoint variables. As the Hamiltionians have to be
minimized all along the trajectory, we introduce

σ1 = ∂H1/∂u1 = 2u1 + ϑu2 + λ1,

σ2 = ∂H2/∂u2 = 2u2 + ϑu1 + μ2,

from which we see that each ui is such that σi = 0, i = 1, 2 , (unless it yields a
negative value, in which case the control saturates to zero). We also introduce the
following adjoint equations

λ̇1 = −∂H1/∂u3 = 0, λ1(1) = γ,

μ̇2 = −∂H2/∂u4 = 0, μ2(1) = δ,

(λ2 andμ1 will not reappear anymore in the analysis). We thus get λ1 = γ andμ2 = δ.
We then get the following relationship:

u�1 = max

{
0,−1

2
(ϑu�2 + γ )

}
, and u�2 = max

{
0,−1

2
(ϑu�1 + δ)

}
.

Let us temporarily restrict our attention to possible solutions where no control sat-
urates to zero. Using the above relationship, and finding δ and γ using the fact that
u�1 and u�2 both sum to unity, we get that if ϑ = 2, then any pair (u1, u2) such that
u1 + u2 = 2 is a Nash equilibrium. Otherwise (ϑ �= 2), the only possible solution is
the pair of uniform distributions, i.e., ∀x ∈ [0, 1], u1(x) = u2(x) = 1.

Now, our aim is to show that the pair

(
u∗

1(x) =
{

2 if x ∈ [0, 1/2),
0 if x ∈ [1/2, 1]. , u∗

2(x) =
{

0 if x ∈ [0, 1/2),
2 if x ∈ [1/2, 1].

)

is a Nash equilibirum, so as to complete the picture suggesting that ϑ = 2 is a bifur-
cation point giving rise to an additional solution.

Regarding player 1, the following relationship has to be satisfied:

−1

2
γ = 2 and − 1

2
(2ϑ + γ ) ≤ 0,
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as, when u�2 = 0, u�1 = 2, and, when u�2 = 2, u�1 = 0 implies the above inequality
(symmetrically for player 2). This indeed translates in the ϑ ≥ 2 requirement for
(u∗

1, u∗
2) being a Nash equilibrium.

A more thorough analysis, addressing the existence of other equilibria, is left for
future research. A closed-loop formulation of the above u-game will typically be inves-
tigated, since in this framework, given the policies u1(·) and u2(·), there is no need of
using conditions at both extremities (x = 0, 1) to compute a trajectory (as opposed to
what happens in the β-game, see Eq. (13)).

Appendix C: Control-theoretical considerations

C.1 Preliminary discussion

Consider the game stated in Sect. 5.1.
If playing β1 = 0 at x = 1 is optimal, one must have ς1 = −λ1 > 0 to the left

neighborhood of x = 1, which translates in:

λ̇1(1) = −γ − 2u1
1 − ϑu1

2 > 0. (44)

As long as β1 = 0 backward in space (moving to the left), one has

λ̇1 = −γ − 2u1
1 − ϑu2 ≥ −γ − 2u1

1 − ϑu1
2 > 0,

after (44). Hence there is no switch.
Similarly, if playing β1 = 0 at x = 0 is optimal, one must have ς1 = −λ1 > 0 to

the right neighborhood of x = 0, which translates in:

λ̇1(0) = −γ − 2u0
1 − ϑu0

2 < 0. (45)

As long as β1 = 0 forward in space (moving to the right), one has

λ̇1 = −γ − 2u0
1 − ϑu2 ≤ −γ − 2u0

1 − ϑu1
2 < 0,

after (45). Hence there is no switch. By symmetry, these observations also hold for
player 2.

Therefore, there is no (non strictly-singular) solution in which one of the players
would play 0 at one of the extremities (0 and 1) of the x domain, except the pair of
uniform distributions. By strictly-singular, we mean a solution in which controls that
belong to (0, 1) are used. This terminology is necessary as actually, playing (0, 0) for
all x makes the trajectory follow a bisingular arc (see Appendix C.2).

What does it leave to us? A plateau (i.e., switching from a to 0 to a, possibly n
times) can be excluded through a very similar reasoning: if switching from a to 0 at
x = ξ ∈ (0, 1) is optimal, then simply substitute the superscript 0 (meaning x = 0)
by the superscript ξ in Eq. (45) and notice that there will be no further switch.
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C.2 On a possible overlap

In this section, we address the existence of a bisingular solution, i.e. a solution in which
both players simultaneously play singular controls. Consider the dynamics (13), where
β1 = β̄1, β2 = β̄2 and x ∈ [xl , xr]. Proceeding as in, and extending, Sects. 5.2.1 and
5.2.2 (dealing with the unisingular components of the solution, and where γ and δwere
determined), one gets two (coupled) equations, respectively ensuring ς̇1 = −λ̇1 = 0
and ς̇2 = μ̇2 = 0:

0 = 2(u1
2 − u2)+ ϑ(u1

1 − u1),

0 = 2(u0
1 − u1)+ ϑ(u0

2 − u2).
(46)

Two cases are to be considered: either ϑ = 2 and the above equation is satisfied iff

∀x ∈ [xl, xr], u0
1 + u0

2 = u1(x)+ u2(x) = u1
1 + u1

2,

(see Sect. 5.2.6 for instance) or ϑ �= 2 and Eq. (46) has for unique solution:

∀x ∈ [xl, xr], u1(x) = ū1 and u2(x) = ū2,

where

ū1 = (−4u0
1 + ϑ2u1

1 − 2ϑu0
2 + 2ϑu1

2)/(ϑ
2 − 4), (47)

ū2 = (−4u1
2 + ϑ2u0

2 − 2ϑu1
1 + 2ϑu0

1)/(ϑ
2 − 4). (48)

From now on, let us consider the generic case ϑ �= 2 only. Proceeding as in Sect. 5.2.3,
we are interested in solving the following system of equations, whose first part below
translates the connection of (23) to (27) through the overlap zone, where u1 and u2
are constant (a kind of plateau);

ū1 = u1
1ea(1−xr), (49)

u0
2eaxl = ū2, (50)

where ū1 and ū2 are given by Eqs. (47) and (48). We do not need specifying the two
other equations (related to u3 and u4) for what follows. The second part consists in
maintaining the continuity of the adjoint variables all along the followed trajectory, as
required by Pontryagin’s minimum principle. Equations (28) and (24) here read:

0 = (γ + ϑu1
2)(1 − ea(xr−1))+ u1

1(e
a(1−xr)(1 − ϑ2/4)

− ea(xr−1)(1+ϑ2/4)+ ϑ2/2) (51)

0 = (δ + ϑu0
1)(e

−axl − 1)+ u0
2(e

−axl(1 + ϑ2/4)

− eaxl(1 − ϑ2/4)− ϑ2/2), (52)
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where are γ and δ given by Eqs. (21) and (26), respectively. Using Eqs. (49) and (50),
Eqs. (51) and (52) yield

0 = 2(u1
2 − u0

2)+ ϑ(u1
1 − u0

1),

0 = 2(u1
1 − u0

1)+ ϑ(u1
2 − u0

2),

which is true iff u1
1 = u0

1 and u1
2 = u0

2. Hence the above system of equations has for
unique solution the trivial one: xl = 0, xr = 1, u0

1 = 1, u0
2 = 1, u1

1 = 1, u1
2 = 1 ,

which was already known as a Nash equilibrium in any event, see Sect. C.1.
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